LANGUAGE OF LEAN

The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Ideal State

The ideal state refers to a vision of a future state where processes are optimized, waste is eliminated, and efficiency is maximized.

The term "Ideal State" is a concept commonly used in the field of Operational Excellence and Lean Management. It refers to a vision of a future state where processes are optimized, waste is eliminated, and efficiency is maximized. In the manufacturing industry, the Ideal State is a vision of a future where operations are running smoothly, production is optimized, and customer satisfaction is high. But what does it take to reach this Ideal State, and what are the key steps to getting there?

The first step in reaching the Ideal State is to understand the current state of operations. This requires an assessment of current processes, an analysis of data, and a clear understanding of the challenges facing the organization. This analysis should provide a clear picture of the current state of operations, including areas of waste, inefficiencies, and potential for improvement.

Once the current state has been understood, the next step is to develop a clear vision for the Ideal State. This vision should be based on the results of the analysis of the current state, and it should take into account the organization's goals and objectives, as well as the current challenges facing the organization. The vision should be clear, concise, and achievable, and it should be shared with all stakeholders.

Once the vision for the Ideal State has been developed, the next step is to develop a plan to reach it. This plan should include a clear strategy, a timeline, and a budget. It should also include clear goals and objectives, and a clear understanding of the resources required to achieve these goals. The plan should be developed in collaboration with all stakeholders, and it should be communicated clearly to all employees.

The implementation of the plan is the next step, and it requires the full engagement of all stakeholders, including employees, suppliers, and customers. This stage involves the implementation of improvements, the implementation of new processes, and the development of new systems and technologies. It also involves the training and development of employees, the integration of new systems, and the implementation of new technologies.

The final step in reaching the Ideal State is continuous monitoring and evaluation. This involves the regular monitoring of processes, systems, and technologies, and the identification and elimination of waste and inefficiencies. This stage also involves the continuous improvement of processes and systems, and the implementation of new technologies and solutions.

In a nutshell, reaching the Ideal State in the manufacturing industry requires a clear vision, a comprehensive plan, and the full engagement of all stakeholders. It requires the elimination of waste, the optimization of processes, and the continuous improvement of systems and technologies. With the right approach, the right tools, and the right mindset, organizations can reach the Ideal State and achieve Operational Excellence.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Quick Response Manufacturing Control

The concept of "Quick Response Manufacturing" (QRM) describes a corporate philosophy which propagates the orientation towards the reduction of lead times as the primary goal of all corporate decisions.

“ Quick Response Manufacturing Control” (QRMC) is a concept developed in the 90’s and describes an organizational philosophy which propagates the orientation towards the reduction of lead times as the primary target of all corporate decisions.

An approach was developed against the backdrop of the thinking that emerged in the 1990s, moving away from specialization and toward strong customer orientation and the resulting process-oriented organization, with the result that the entire organization was fundamentally transformed and aligned to the factor of time. Improved quality, lower prices, and greater responsiveness are accomplished as a result of the company's ongoing focus on the QRMC principles.

The concept of short lead times does not clearly stop when production reaches its limits; rather, all divisions of the complete organization must be incorporated into this strategy and align the targets, as determined by customer needs. Furthermore, this model allows for an outwardly adaptable and quick response to changing customer requirements.

Properties of QRMC

QRMC is distinct from existing "lean management" approaches, which are not in competition with QRMC but rather complementing it.

QRMC is appropriate for usage in businesses where production has the features of a significant number of variants manufactured in small batches with customer-specific characteristics. To make a decision if QRMC is the right approach for your business, see the following matrix.

A paradigm shift from the dominance of cost-based approaches and ways of thinking (e.g. unit costing) to measuring instruments is proposed, with the lead time for customer order fulfillment as the only essential indicator for controlling the overall material flow. It is vital to consistently use the four QRMC core concepts in order to successfully implement the QRMC philosophy in your organization in a durable and broad manner:

  1. Time is crucial

  2. Adaptation of organizational structures

  3. Organizational-wide application

  4. Dynamic toolset

Time is crucial

The common wisdom about work is that the quicker, harder, and greater you work, the more work you accomplish in less time. This mindset is represented in today's control systems, which consider "touch-time" control (value-adding activities) to be the most important component in time efficiency. Because the "touch-time" can be precisely measured without any doubt. And each and every controller assumes: Only what I can measure I can control. However, because touch-time lead times account for only around 5% of all lead time, the cost-cutting potential is modest as most of the time it is already squeezed to a minimum.

Furthermore, no matter what system you look at, the presumption of “faster, higher, further” only applies to a certain point, the break point. See it overstressing the the system. E.g. when the manufacturing input factors (5M) are pushed to their limits, the quality level will drop, toolings will wear out faster or even destroyed, in short: the system will collapse.

But to keep on going, how is the “non-touch-time” (non-value-adding tasks) measured. According the standard, cost-based approach, all expenditures for incoming and finished goods storage are covered including all overhead that is needed on defining processes on how and when a product will be produced. With existing traditional systems, these overhead costs are not really accurate apportioned.

As a rule, overcharges are utilized to spread this cost block among the things. Most of control frameworks don't correspond upward an ideal opportunity to the genuine causes. These overheads, then again, address the costs of time, or all the more explicitly, the expenses of lead times.

QRMC doesn't suggest that upward costs can be allocated all the more effectively, yet rather that more limited lead times mean lower upward expenses. The lead season of associations that attention on a QRMC technique is continually limited, permitting the organization to prosper in market significant numbers (e.g. delivery reliability or delivery time).

It may be challenging trying to begin utilizing QRMC approaches. Toward the beginning of a QRMC project, taking on the QRMC methodology and rules will prompt higher item costs.

The formation of cycle arranged hierarchical units eliminates the division of work into little useful work steps in free handling units (purported QRMC cells). The "autonomous working gatherings" work association standards are utilized in this QRMC cell's rundown steps. Inside the QRMC cell, multi-functional staff has a bigger responsibility, which is addressed in an expansion in "touch-time."

More modest clumps ought to be fabricated, as indicated by QRMC, to upgrade responsiveness. Thus, there are more set-up processes, which raise unit costs. Producing more modest bunches requires a higher recurrence of set-up processes, prompting more noteworthy set-up costs.

How does the lead time consumption influence you in the event that you can deliver on request and not in stock in light of the QRMC drive?

Cost decreases for distribution center terminations, as well as continuous structure uses, staff compensations for material dealing with, and deterioration costs, are completely limited. Notwithstanding these immediate consumptions, managerial expenses, for example, arranging and establish the executives have been brought down essentially.

Inventories ascend in esteem since they are not sold on the grounds that they are not created because of direct client interest.

All things considered, lead times brings down upward expenses. As opposed to the accepted problem of the following expense expansion in customary controlling, an increment in “touch-time" will subsequently bring about a general expense decrease, thinking about hierarchical QRMC structures!

Adaption of organizational structures

With a traditional and capacity arranged construction, an organization working in a confounded and dynamic market environment described by small batches, huge variations, customer specific goods, and intense competition can't achieve the objective of significantly bringing down the lead times. Accordingly, many errands have almost no immediate market reference; the longings of both outer and inner clients are just obscure. Besides, a capacity arranged association is wasteful, with long coordination and choice cycles.

Four areas of activity are determined to meet the points of "responsiveness to the customer" as a vital cutthroat component and leap forward into new aspects as far as adaptability and execution.

  1. Change to cell manufacturing

  2. Group liability rather than hierarchical control

  3. Broadly educated workers > Qualification Matrix

  4. Lead time as key figure

CELL MANUFACTURING

The solid consideration towards customers needs delivers a QRMC cell. This requires the mix of all capacities expected to meet customers assumptions, and henceforth focuses on a painstakingly characterized and limited market and additionally customer target.

Thusly, a QRMC cell involves the express task of man, machine, material, and procedure in a multi-useful structure, as well as their actual mix in one spot. Subsequently, outline work exercises are handled autonomously and completely to make a cell result.

Team responsibility

The drop from a hierarchical organization, in which those in control train e.g. operators what and how they should work, to a self-mindful organization inside a cell, is the following field of activity. Representatives plan and assemble their own corporate philosophies. The notable strategies for autonomous gathering work, like work revolution, work advancement, and occupation growth, come into consideration here. By working autonomously, productivity and product quality are improved endlessly. After totally planned requests have been finished; time is accessible to finish one more part of the QRMC hierarchical design: multi-practical employee qualification.

Multi-Qualified employees

At the point when workers are sick or on vacation, their obligations can be taken over and dealt with by different colleagues. This is the most quick rationale in broadly educating exercises. One more part of "cross functional qualification" is that weariness in positions is killed, and the scope of assignments turns out to be seriously captivating. This inspiration has an unsuitable clarification, however it is considered unreasonably quickly. Other key explanations behind "cross functional qualification" with regards to QRMC includes:

  • Subject to the every day bottleneck, the obligations in a QRMC cell are incredibly adaptable. Various requests might happen at various stations inside the cell, expecting operators to work on an assortment of assignments consistently. The multi-qualified operators upgrade the cell's adaptability, empowering bottlenecks to be kept away from.

  • Advanced machine parks don't constantly request the full focus of operators. Subsequently, the operator should be qualified of handling different machines at the same time.

  • Long-term continuous improvements of process steps inside the QRMC cell are much of the time achieved because of the different work volumes.

Lead times as key figure

To evaluate the cell's performance, the lead time must be utilized and assessed frequently. Overhead costs can only be lessened by concentrating on lead times and the consequent suffering pressure to lower it.

The lead time is defined as the major goal as a result of this knowledge. On the 2nd layer, standard indicator systems and performance indicators do not need to be updated; instead, they operate as assistance and control function. The QRMC number can support this targeted orientation on cell level.

The following formula is used to compute the QRMC number:

Q "RM - Number "= "Lead Time reference period" /"Current Lead Time" ×100

Two points must be predetermined for a sufficient implementation of this new measurement technique:

  1. To commence, the cell must clearly control the start and end points of the lead time measurement ("When does the time starts to run?"). Only when the cell has both the necessary material and the order release, for example.

  2. The time, on the other hand, should only be monitored if the cell has absolute control over the associated time. Only those aspects of the cell's team that it has command on can be assessed.

As a result, employing the QRMC number has a variety of benefits:

While the assessment reveals a falling curve when appropriate measures to minimize the lead time within a cell are adopted, the graphical display of the QRMC number shows an ascending graph. The cell crew is much more inspired by increasing graphs than by dropping graphs.

Smaller lead time reductions at a later period are awarded more than greater lead time reductions at an earlier time by the QRMC number. This is demonstrated by the fact that lowering the lead time from e.g. 1hr to 30min is more difficult than cutting it from 3min to 2min.

Lastly, the QRMC number creates a dynamic competition within the organization, allowing teams and cells to monitor and analyze their progress in lead time reduction.

Organization wide application

In order to adopt the QRMC approach in your production areas it needs to be rolled out in the complete organization.

The fields of administration, purchasing, and product development are clearly referenced. As previously stated, it is also essential to minimize the interfaces by remodeling the cells to QRMC cells. Moreover, conventional process optimization techniques can be abolished, parallelized, integrated, or altered.

Planing your production with QRMC

A Material and Resource Planning (MRP) system helps you with production planning by assessing material requirements, initiating order proposals, and executing orders based on delivery dates.

The MRP system, on the other hand, is only as good as the employees filling it with information. In contrast to the processing time, "buffer times" for the order term are frequently scheduled to ensure smooth workflow and overcome planning flaws. The parameters for an MRP system are fairly straightforward after rebuilding the organization to QRMC cells. The MRP system is used to carry out greater cooperation and scheduling of the material flow from the supplier via the QRMC cells to the end date.

The system uses conventional logic based on lead times to regulate WIP levels, material orders, and backward scheduling by delivery date. The lead time is determined using the QRMC cell's lead time rather than the processing timings for every processing stage.

The MRP system is not used to manage micromanagement for each particular machining phase; this is performed by the cells independently. This implies the MRP system will be simpler, and the buffer times associated with each machining process will be shorter. Adjustments in the lead time as a result of cell optimizations are communicated back to the MRP system.

To synchronize order planning in QRMC systems with several QRM cells, a "capacity forecast" system, the so-called POLCA system, is initiated.

The POLCA (Paired-Cell Overlapping Loops of Cards with Authorization) system relies on the QRM cell structure and guarantees a constant flow of information among two cells. This prevents production from causing material blockages in the next cell. As a result, WIP accumulate between both the QRM cells. POLCA straightens out the varied capacities and lead time per cell, inhibiting the development of these "buffer or backlog stocks."

Due to planning in the MRP system, POLCA only operates on an order if it is required and genuinely needed POLCA aids in the identification of highly frequented bottlenecks in the system, narrowing the range of optimization techniques.

Coming to an end

Through the adoption of the QRMC methodology and its effective implementation, not only are lead times lowered, but also overhead expenses are diminished tremendously.

Additional effects include increased product and process quality, and also high variability against short-term market shifts and fluctuating client behavior. Customer responsiveness in today's marketplaces, with the appropriate items in the right location at the right time, is a crucial component that will result in greater market share. Cost savings and sales growth can both be achieved with QRMC.

In todays and tomorrows competitive market, a strategy that guarantees organizations are more competent and durable.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Smoothed Production

Smoothed production is integral for customer satisfaction as it is a part of the ordering and complete fulfillment process. It makes sure that the supply chain capabilities are enough for stable production.

The topic of discussion today will be the so-called smoothed production. It is integral for customer satisfaction as it is a part of the ordering and complete fulfillment process. It makes sure that the supply chain capabilities are enough for stable production.

Smooth production benefits you by having a proper influence on your workplace configuration. It does this by helping to create a stable output with optimized inventory via a pre-condition. This presupposition/pre-condition simplifies your workplace based on the following conditions:

The smooth production is structured in the following:

  • Planning Strategy

  • Constant lot sizes

  • Stabile material needs

  • Fixed production times

  • Flexible inventories

  • Fixed timelines

  • Higher delivery dependability

It is implemented by:

Material flow

  • Scheduling methods

  • No part shortages

  • Pull-principle

  • Supermarket

  • Route traffic

  • Small containers

Warehouse Organization 

  • Full transparency

  • FIFO-Principle

  • Minimal warehouse levels

  • Set assembly

  • Bar codes and Data Matrix Codes

You may be asking the question, “but why do we need smooth production?”

It is a well-known fact that smooth production has many veritable advantages. With that said, there are also some potential drawbacks, but those can be eliminated or at the very least mitigated in the implementation phase. 

Here are some of the benefits and drawbacks of smooth production:

The next question you might be asking is, “how does one implement smooth production?”.

Following are some of the requirements for smooth production:

  • Variable worker allocations should be the basis for the production power of the system. The variable shift models are first optimized for maximum output and then implemented specifically.

  • Two factors determine the minimum inventory of safety stock for a part number. The first is the variability in customer ordering habits. The second factor is the degree to which the program is successful in the production line. To hit the right spot between these two factors will require systematic optimization with the help of a mathematical model.

  • To determine what the maximum inventory of each part number should be, we should look at the delivery cycle of that said part number. This is essential for weekly pick-ups or delivery.

  • The production equipment inventory should be in accordance with necessary tool changes and set-up times.

  • The weekly production plan should be consistently released to the concerned parties once the production macro planning has been finished.

  • An information board at the assembly areas will contain all the planned orders.

  • The material requirement determination should solely be on the basis of the production plan.

  • Assembly areas should be designated for the online measurement of production units. A data matrix system should be implemented for reducing errors in the documentation process.

  • The ability to control production is a must if there are any noticeable short-term reactions arising due to discrepancies between the expected outcome and the actual outcome of the production plan.

  • Any daily deviations must be dealt with proper countermeasures. The production plan must be flexible enough to allow time to deal with backlogs. Meeting shipping deadlines is the primary goal.

  • A time-saving approach must be implemented in moving full racks from assembly areas to warehousing. 

  • The requirements of the long-term sales plan should be integrated into the production plan so that production capacities and worker allocation are determined. 

  • It is imperative that order calling and Just-In-Time delivery schedule data be automatically transferred to the resource planing system so that production planning can be done.

  • The production planning for the system will determine the specific production calendars with your organizations shift models. 

  • All underlying data in the system must contain related shipping dates or the dates can be transferred from the demand data as well. 

  • To control the complete system, the updated inventory trend with planned shipping dates, for example, weekly and monthly, should be represented graphically.

  • All possible scenarios should be simulated, because it is important to determine optimum capacities, performance, etc. for universal or shared production areas.

So, what factors make smooth production successful?

The two factors are planned output realization and controlling of supply

  1. Production plan fulfillment as a part of planned output realization (source: Information board at production area as part of shop floor mgt)

  2. Performance grading of workers in the production area that is done on the basis of the number of Dollars created in exchange for optimal material usability and worker effort (whether overtime or temporary workers)

  3. Material usability of purchased parts, WIP, and raw materials when assembly time bears the cost or parts become short (Source: Information board at production area as part of shop floor mgt)

  4. Special trips for the respective assembly area as a truthful Dollar figure

  5. Supply capabilities and service grade for finished goods are measured using the number of delivered parts and the number of delivery dates met as a result of customer requests when demand data is transferred. (Source: Information board at production area as part of shop floor mgt)

Alternative measures for the success of smooth production:

  • Usage of constant customer feedback to determine customer satisfaction as used by companies e.g. from the automotive industry 

  • Iterative comparison of customer feedback with important shipping and delivery figures

  • Target values of no customer feedback are used to get parameters to measure with

With the help of Kaizen workshops in conjunction with the introduction and implementation are used to create optimal basic parameters of success:

  • The finished goods inventory levels are available transparently to be used as an early warning signal

  • A minimal failure rate is strived for in the overall process of making sure of data from the production and logistics division

  • Over-production of products is reduced by ensuring that upstream assemblies are only producing the right amount of product to be used by the downstream processes

  • With the implementation of workshops, the set-up time can be reduced drastically

  • Constant reduction of purchase parts does not diminish the availability of the material in the production line while also reducing downtime 

  • Optimal balance is achieved for assembly lines and areas and the requirements are met for variable worker allocation

  • The specifications of operator qualification shall determine how the qualification and training of workers should be conducted

  • There has been evidence of improvement in production flexibility in comparison to the past

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Takt Time

The rate at which product must be turned out to satisfy market demand.

Takt Time is the beat of your process. When your process is perfectly balanced the complete workload and capacity throughout the complete value adding chain is best utilized to fulfill your customer demands.

So this is already it, the customer determines your Takt. Just have a look on your available net production time and divide it by the rate of the customers demand. I do the exact same thing, when I’m in the role of a project manager I want to optimize the available resources and straighten out the workflow over the expected time needed to finish the project. In the Lean World it is also important to understand the difference between Cycle, Lead and Takt Time if you are running a sophisticated Project or SIX Sigma initiative.

So let’s have a look at the differences

Lead Time VS Cycle Time

It happens very often that people mix up Cycle Time with Lead Time. Most common is the thinking that Cycle Time is the time needed between order placement and delivery while others think it is the pure time between two deliveries.

To put this straight, Cycle Time is the time from when the work is started until it is ended. This brings us to Lead Time.

Concerning Lead Time, it starts with the first contact from customer side e.g. the placement of an order and ends with the shipping.

Easy example:

Order placed by customer on July 12.

Order processed (actually fulfillment of order July 18-20.

Order shipped on July 20.

This gives you a Cycle Time of 3 days but a Lead Time of 8.

This exactly the point where value stream mapping comes into place and can help you on cutting down Lead and Cycle Time, but I will get you there in a different article.

Don’t get on the wrong path of thinking that Cycle Time is the pure value adding, it is simply the time you need for processing the order. That is the reason why should focus on Cycle Time when starting lean initiatives and make your way from there.

Takt Time

Yes it comes from Germany, TAKT comes from Taktzeit, meaning the rhythm of music. TAKT is therefore the beat of your process it is the measurement of your existing production. The Takt Time gives you the maximum amount of time to meet customer demands. In other words Takt Time is the heart beat of your customer and if you are not able to supply your customer in Takt you will bring your customer in struggle. Then you are very quickly no longer a supplier

So what is the Takt Time formula:

(Net Operation Time Available for Production)/(Customer’s Demand)

Always in the given unit of time.

Let’s make an example with the automotive industry:

Your OEM wants 1.000 cupholders per day. You have 8 hrs shift working two shifts per day. That gives you 16hrs per day. Then you deduct times for breaks, distribution time and for preventive maintenance measures, we assume 75mins per shift, this gives you:

16 * 60 = 960 minutes

960 - 150 (75*2 Shifts) = 810 minutes

810 minutes / 1.000 cupholders

= 0,81 minutes per cupholder

or in other words you have 48,6 seconds for one cupholder

Having a look on this calculation you still have to consider some factors, such as operations that are done simultaneously.

The tricky part with Takt Time is that it is based on the assumption that you have a continuous amount of demands coming in from day to day. With high fluctuations on demand you will have to readjust your Takt Time from time to time.

Takt Time is also used to calculated a couple of other parameters, such as batch size, work in progress, shifts needed or operators needed.

What to say in the end…

If you are trying to run KAIZEN actions or CIP measures the first thing to understand is what does Cycle, Lead and Takt Time stand for. Only with the right setting in the beginning your improvement efforts will show an effect.

Read More
The Language of Lean Lukas Breucha The Language of Lean Lukas Breucha

Lead time

Lead times is based on the time that a component needs to get from the raw material stage to the customer.

Lead time – throughput time

In lean philosophy, lead time is seen as the key indicator. Lead time is proportional to the level of

> excess production and

> inventory in the value stream.

It is based on the time that a component needs to get from the raw material stage to the customer.

To calculate lead time in ...

... Batch production:

 processing time + transport time + idle time

... Single-piece production:

 Time from order input to operation

The total time it takes for a process to convert a raw

material to a finished quality part

 

The competitiveness of companies depends on whether products and services meet market requirements in terms of time, cost and quality. As the dynamics of the market increase, the importance of the time dimension increases. This means that products have to be developed, manufactured and made available to customers ever faster. The same applies to services of all kinds. The decisive factor here is the so-called lead time, which should be as short as possible.

 

What is the lead time?

The lead time (DLZ) describes the time span for processing orders or for the course of processes between and within companies. According to REFA, the lead time in a work system is referred to as time type TD. You

 

may include scheduled and additional stages and times,

is an important parameter for assessing the quality and performance of processes and work systems,

can be used in a variety of ways, especially to generate key figures,

is determined at REFA for orders (order lead time), process chains and processes (process lead time) and for individual work systems (work system lead time).

What are the components of the lead time?

The lead time in production plants consists of the following components (partly optional):

 

Execution time: Sum of the times of all process segments for carrying out task or order processing in the work system.

Additional time: Sum of the times of all process segments that can occur in addition to the scheduled execution of tasks. If additional times occur regularly, this is an indication of potential for improvement.

Transport time: Sum of the times of all process stages that are used to transfer the order to the following work system, for example, transport time of finished parts from assembly into the warehouse.

Waiting time: Sum of the times of all process sections in which the order waits between two work systems for its further execution, e.g. finished individual parts wait for assembly to the finished product.

Storage time: Sum of the times of all process stages in which parts, semi-finished and finished products of an order are stored in storage areas before, between, or after execution.

How can the lead time be shortened?

Approaches to shorten the lead time are:

 

technical or technological improvements

Avoidance of disturbances

Improvement of workflow and information flow - Process optimization

Balancing the capacities of the resources used and the employees deployed

Information and qualification of the employees involved

Read More

Stay Connected


Ad

We want information fast and in a nutshell. We from OI recommend Blinkist* - because it’s simply the best.

* = Affiliate Link