
LANGUAGE OF LEAN
Process Chain
The manufacturing industry is a complex system of processes, with each stage relying on the success of the previous one to achieve the final product.
The manufacturing industry is a complex system of processes, with each stage relying on the success of the previous one to achieve the final product. The process chain is the backbone of this system, connecting each stage together to ensure a seamless flow of goods and services.
To achieve the highest level of efficiency in the production process, it is important to understand the process chain and how it serves the production processes. This includes identifying the inputs, outputs, and key activities of each stage, as well as the flow of goods, services, and information throughout the chain.
One of the first steps in optimizing the process chain is to establish clear and standardized procedures for each stage. This includes defining the roles and responsibilities of each team member, as well as establishing a clear communication plan to ensure that everyone is aware of the status of each stage.
Another important factor in optimizing the process chain is to reduce waste and increase efficiency. This can be achieved through continuous improvement efforts, such as streamlining processes, reducing inventory, and minimizing lead times. Lean tools, such as value stream mapping, can be used to identify areas of waste and opportunities for improvement.
Additionally, investing in new technology and equipment can also help to improve the process chain. Automation and digitalization of the production process can lead to faster and more accurate production, as well as reduced labor costs and increased productivity.
Furthermore, involving employees in the continuous improvement process is crucial in achieving the best results. Encouraging their input and ideas can lead to new solutions and creative thinking that can drive process improvement. Employee training and development programs can also help to enhance the skills and knowledge of the workforce, leading to increased efficiency and effectiveness.
Another important aspect of the process chain is supplier selection and management. Careful selection of suppliers can ensure that high-quality inputs are used in the production process, reducing the likelihood of defects and increasing efficiency. Effective supplier management can also ensure timely delivery of goods and services, reducing lead times and minimizing the impact of supply chain disruptions.
In a nutshell, the process chain is a critical component of the manufacturing industry, serving as the foundation for the production processes. By establishing clear procedures, reducing waste and increasing efficiency, investing in new technology, involving employees, and carefully selecting and managing suppliers, manufacturers can optimize the process chain and achieve operational excellence
Zero Defects
Zero Defects, also known as "Zero Quality Control" or "ZQC," is a quality improvement philosophy that seeks to eliminate defects in the production process.
In other projects we have witnessed the significant impact that Zero Defects programs can have on a manufacturing organization. Zero Defects, also known as "Zero Quality Control" or "ZQC," is a quality improvement philosophy that seeks to eliminate defects in the production process. This philosophy has its roots in the Total Quality Management (TQM) movement and has been widely adopted by many manufacturing organizations.
The Zero Defects philosophy is based on the belief that quality should be built into every product, from start to finish. The goal is to eliminate defects and ensure that products are produced to the highest standard, meeting or exceeding customer expectations. This approach to quality focuses on the entire production process, from raw materials to finished goods, and encourages all employees to be actively involved in the quest for zero defects.
One of the key benefits of a Zero Defects program is that it helps to create a culture of continuous improvement. Employees are encouraged to identify areas where defects are occurring, and to work together to eliminate these issues. This creates a sense of ownership and engagement among employees, which in turn drives improved performance and results.
Another key benefit of Zero Defects is that it reduces the costs associated with rework and product defects. Defects in the production process can lead to increased costs, such as scrap, waste, and retooling. By reducing or eliminating these costs, organizations can improve their bottom line and remain competitive in their industry.
The key to success with Zero Defects is to have a well-defined process in place. This process should start with defining the standards for each product and then identifying the critical-to-quality characteristics that must be met. From there, a detailed process map should be created that outlines the steps involved in the production process, from raw materials to finished goods. This process map should also identify the potential sources of defects and highlight the steps that need to be taken to eliminate these defects.
Once the process map is in place, the next step is to implement the Zero Defects program. This involves training employees on the Zero Defects philosophy, as well as the process map and the critical-to-quality characteristics. It is also important to provide employees with the necessary tools and resources to identify and eliminate defects. This may include things like checklists, forms, and software programs.
In addition to training and tools, it is also important to have a robust feedback and continuous improvement process in place. This can include regular quality audits, customer feedback, and employee suggestion programs. The goal of these programs is to identify areas where defects are occurring, and to work together to eliminate these issues.
Finally, it is important to track progress and measure success. This can be done by tracking key performance indicators (KPIs), such as the number of defects, scrap rates, and customer satisfaction levels. By tracking these KPIs, organizations can determine whether their Zero Defects program is having a positive impact and make adjustments as needed.
In conclusion, Zero Defects is a powerful tool for organizations looking to improve the quality of their products and processes. By eliminating defects, organizations can improve customer satisfaction, reduce costs, and remain competitive in their industry. The key to success with Zero Defects is to have a well-defined process in place, and to actively involve employees in the quest for zero defects. By doing so, organizations can achieve operational excellence and realize their full potential.
Regular Communication
Regular communication refers to the continuous exchange of information between different departments and individuals within an organization.
Regular communication refers to the continuous exchange of information between different departments and individuals within an organization. The aim of this communication is to ensure that everyone is on the same page, working towards the same goals, and that any problems or obstacles are addressed promptly. In this article, we will explore the positives aspects of using regular communication in manufacturing and how it supports shop floor management in three steps.
Improves Collaboration and Cooperation
Regular communication plays an important role in improving collaboration and cooperation within an organization. When everyone is kept informed about the latest developments, it becomes easier for employees to work together effectively. They can share ideas and best practices, identify areas for improvement, and help each other overcome challenges. As a result, teamwork becomes more efficient, and everyone is able to contribute to the success of the organization.
Facilitates Problem Solving
Problems and obstacles are a natural part of any manufacturing process. However, if they are not addressed promptly, they can quickly escalate into bigger issues. Regular communication helps to ensure that problems are identified and addressed in a timely manner. When employees are able to openly communicate with each other, they can work together to find solutions and prevent problems from getting worse. This helps to minimize the impact of any issues on production and ensures that the organization is able to maintain its competitiveness.
Supports Shop Floor Management
Regular communication is also an important aspect of shop floor management. Shop floor management refers to the process of managing the day-to-day operations of a manufacturing facility. Regular communication helps to ensure that everyone is aware of their responsibilities and is able to perform their duties effectively. It also helps to identify areas for improvement and makes it easier for managers to provide feedback and guidance. In addition, regular communication helps to create a culture of continuous improvement, where everyone is encouraged to take an active role in driving progress and improving performance.
In a nutshell, regular communication is a crucial aspect of Lean management in manufacturing. It plays an important role in improving collaboration and cooperation, facilitating problem solving, and supporting shop floor management. By incorporating regular communication into their operations, organizations can ensure that everyone is working together effectively, that problems are addressed promptly, and that the organization is able to maintain its competitiveness.
Audit
Audits are a critical component of any lean manufacturing program, as they provide a structured and systematic approach for evaluating the effectiveness of the processes and procedures in place.
Audits are a critical component of any lean manufacturing program, as they provide a structured and systematic approach for evaluating the effectiveness of the processes and procedures in place. Audits help to identify areas for improvement, track progress, and ensure that best practices are being followed.
We would like to outline the 5 steps in order to prepare and conduct a successful audit in a manufacturing setting. These steps are as follows:
Define the audit scope: Determine what areas of the manufacturing process will be evaluated during the audit. This may include areas such as production line processes, inventory management, and quality control procedures.
Gather data: Collect relevant data and information that will be used during the audit. This may include data on production volumes, inventory levels, and quality control data.
Prepare audit checklists: Develop a detailed set of checklists that will be used to evaluate the different areas of the manufacturing process. These checklists should be comprehensive and include questions about process flow, standard operating procedures, and key performance indicators.
Conduct the audit: Conduct the audit using the checklists developed in step 3. This should be done by a team of experts who have a thorough understanding of the manufacturing process and best practices.
Analyze the results: After the audit is complete, analyze the results to identify areas for improvement. This may include the development of action plans to address any areas of weakness or non-compliance.
In order to ensure a successful audit, it is important to follow a set of best practices. Here are 10 tips for a successful audit in a manufacturing setting:
Be well-prepared: Ensure that you have a thorough understanding of the manufacturing process and the areas that will be evaluated during the audit.
Use a team approach: Conduct the audit as a team to ensure that all areas are thoroughly evaluated and that all perspectives are taken into account.
Follow a structured approach: Use a structured approach and follow the audit checklists developed in step 3 to ensure a consistent and systematic evaluation of the manufacturing process.
Be objective: Maintain objectivity throughout the audit and avoid making assumptions about the manufacturing process or the results.
Focus on best practices: Evaluate the manufacturing process against best practices and ensure that these are being followed.
Be open-minded: Be open-minded and willing to consider alternative approaches and new ideas for improvement.
Be transparent: Be transparent about the audit process and the results, and communicate openly with all stakeholders.
Follow-up on action plans: Ensure that action plans are developed to address any areas of weakness or non-compliance identified during the audit.
Continuously monitor progress: Continuously monitor progress and track progress against the action plans to ensure that improvements are being made.
Encourage continuous improvement: Encourage continuous improvement and encourage all stakeholders to be involved in the audit process and to contribute to the improvement of the manufacturing process.
In a nutshell, audits are an essential component of a successful lean manufacturing program. By following the 5 steps and the 10 tips outlined above, manufacturers can ensure that they are conducting effective and successful audits that lead to continuous improvement and enhanced competitiveness.
Cell Production
Cell Production focuses on optimizing the flow of work and improving efficiency in manufacturing and operations.
Cell Production focuses on optimizing the flow of work and improving efficiency in manufacturing and operations. It is based on the concept of organizing work into cells, which are self-contained units responsible for performing a specific set of tasks. The goal of cell production is to minimize waste, increase flexibility, and improve overall performance.
The origins of cell production can be traced back to the 1950s and 60s, when Toyota and other Japanese companies were experimenting with new approaches to manufacturing. Over time, the concept of cell production has evolved and been refined, and today it is widely used in a variety of industries, including automotive, electronics, and consumer goods.
In order to implement cell production effectively, there are several key steps that organizations must take. Firstly, it is important to conduct a thorough analysis of the current state of the manufacturing or operations process, in order to identify areas where improvements can be made. This may involve mapping out the flow of work and identifying bottlenecks or other inefficiencies.
Once these areas have been identified, the next step is to reorganize the work into cells, taking into account the specific requirements of each cell and the skills and expertise of the employees who will be working in them. This may involve rearranging physical work spaces, or changing the way that work is assigned and managed.
It is also important to establish clear communication and feedback mechanisms, so that employees and teams can work together effectively. This may involve setting up regular meetings to discuss performance, or implementing systems for tracking and reporting on key metrics.
In order to ensure a successful implementation of cell production, it is also important to provide training and support for employees. This may involve providing training on the new processes and procedures, or offering coaching and mentoring to help employees develop the skills and knowledge they need to be effective.
Another key aspect of cell production is continuous improvement. This involves regularly reviewing performance and making adjustments as needed, in order to optimize efficiency and reduce waste. This may involve experimenting with different approaches, such as implementing new technologies or streamlining processes, in order to find the best solutions.
In conclusion, cell production is a powerful methodology for optimizing performance in operations and manufacturing. By reorganizing work into cells, minimizing waste, and continuously improving performance, organizations can increase efficiency, reduce costs, and improve overall performance. In order to be successful, organizations must take a structured and systematic approach, and be committed to ongoing improvement.
TPM - Total Productive Maintenance
Total Productive Maintenance (TPM) is a maintenance strategy that involves involving all employees in the maintenance process to maximize equipment productivity and minimize downtime.
Total Productive Maintenance (TPM) is a methodology that originated in Japan in the 1970s and has since become a widely recognized and adopted approach to operational excellence in manufacturing and other operations-focused industries. It is a comprehensive approach that seeks to optimize the performance of equipment and processes through a focus on maintaining and improving reliability and efficiency.
The origins of TPM can be traced back to the Japanese auto industry, where manufacturers were seeking ways to increase productivity and competitiveness in the face of increasing global competition. TPM emerged as a response to the need for a more proactive and integrated approach to equipment maintenance, with the goal of improving both productivity and overall equipment effectiveness (OEE).
Over time, TPM has evolved and expanded to encompass a wider range of objectives and activities. Today, it is widely regarded as a best-practice approach to operational excellence, and is widely used in many different industries, including manufacturing, healthcare, and government operations.
One of the key features of TPM is its focus on involving all employees in the maintenance and improvement process. This is achieved through the creation of cross-functional teams and the use of a range of techniques, including root cause analysis, standardization, and continuous improvement.
Another key aspect of TPM is its focus on data-driven decision-making and performance measurement. This involves the collection and analysis of data on equipment and process performance, which is then used to identify areas for improvement and to drive continuous improvement efforts.
When properly implemented, TPM can have a significant impact on organizational performance and competitiveness. This can include improvements in equipment reliability, increased productivity, reduced waste, and improved overall equipment effectiveness (OEE).
To achieve these benefits, it is important to implement TPM in a structured and systematic way, with clear goals and objectives and a strong focus on continuous improvement. This typically involves a multi-phased approach, starting with an assessment of existing processes and equipment, followed by the development of a comprehensive improvement plan and the implementation of specific improvement initiatives.
In a nutshell, TPM is a proven methodology that can help organizations achieve operational excellence by optimizing the performance of their equipment and processes. To achieve success, organizations must approach TPM in a systematic and structured way, with clear goals and objectives, and a strong focus on continuous improvement.
Key points for a successful TPM implementation:
Involve all employees in the process
Focus on data-driven decision-making
Adopt a multi-phased approach
Prioritize continuous improvement
Develop a comprehensive improvement plan.
Push Principle
The Push Principle Concept/Term refers to a production system where material and products are manufactured and moved along the production line based on a predicted demand, rather than actual demand.
The Push Principle Concept/Term refers to a production system where material and products are manufactured and moved along the production line based on a predicted demand, rather than actual demand. This system operates under the assumption that the customer demand can be accurately forecasted and the production line can be appropriately scheduled to meet that demand.
However, the Push Principle often leads to negative impacts on operations. One of the main problems with this system is the assumption of accurate demand forecasting. In reality, customer demand is highly unpredictable and can fluctuate rapidly, leading to overproduction and inventory buildup. This excess inventory creates significant problems such as storage and handling costs, obsolescence, and potential quality issues.
Additionally, the Push Principle often results in an inefficient utilization of resources. The production line is designed to produce a set amount of product, regardless of actual demand. This can lead to idle time and equipment, increased energy costs, and reduced production capacity. The production process is also disrupted by production line breakdowns, worker absences, and equipment failures, resulting in increased downtime and decreased efficiency.
Another negative impact of the Push Principle is that it can lead to a lack of focus on customer needs. The emphasis is on meeting a predetermined production schedule, rather than meeting the actual needs of the customer. This can result in an overproduction of products that are not needed, as well as a lack of flexibility to adapt to changing customer demand.
To mitigate these negative impacts, Lean Management experts advocate for the implementation of the Pull Principle. The Pull Principle is a system where production is based on actual customer demand, rather than a predicted demand. This system allows for a more flexible and efficient utilization of resources, as well as a greater focus on meeting the actual needs of the customer.
In a nutshell, the Push Principle can lead to negative impacts on operations such as inventory buildup, resource inefficiency, and a lack of focus on customer needs. Lean Management experts recommend the implementation of the Pull Principle as a more efficient and effective alternative. By focusing on actual customer demand, organizations can achieve greater operational efficiency and meet the needs of their customers.
JIT
Just-in-Time (JIT) is a manufacturing and inventory control system in which raw materials, components, and finished products are delivered to the production line exactly when they are needed.
Just-in-Time (JIT) is a manufacturing and inventory control system in which raw materials, components, and finished products are delivered to the production line exactly when they are needed. The goal of JIT is to minimize inventory levels and reduce lead times, while maintaining high levels of production efficiency.
JIT is a pull-based system, which means that production is driven by customer demand rather than by a production schedule. This is achieved by using Kanban, a signaling system that alerts the supplier to send more materials or components when the inventory level of a specific item reaches a predetermined minimum level.
The origins of JIT can be traced back to the manufacturing practices of the Toyota Motor Company in the 1950s. It was developed by Taiichi Ohno, an engineer at Toyota, as a response to the inefficiencies he observed in the company's production processes. Ohno recognized that by reducing the amount of inventory and increasing the flow of materials, Toyota could improve its production efficiency and responsiveness to customer demand.
One of the key principles of JIT is the elimination of waste, or "muda" in Japanese. Ohno identified seven types of waste in manufacturing: overproduction, waiting, unnecessary motion, overprocessing, defects, excess inventory, and unused human potential. JIT aims to eliminate these forms of waste by creating a smooth and efficient flow of materials and products through the production process.
JIT also relies on the concept of "one piece flow", which is the production of one item at a time, rather than producing large batches of items. This allows for better control of the production process, as well as the ability to quickly identify and correct any problems that may arise.
Another important aspect of JIT is the use of visual management tools, such as Andon boards and Kanban boards. These tools allow for real-time monitoring of the production process, and can alert workers to potential problems before they become major issues.
JIT also requires a high level of collaboration and communication between suppliers, manufacturers, and customers. This is necessary to ensure that materials and components are delivered to the production line exactly when they are needed, and that finished products are delivered to customers in a timely manner.
JIT has a number of benefits for manufacturers. One of the most significant is that it can help to reduce inventory levels, which can free up valuable floor space, reduce storage costs, and minimize the risk of stockouts. JIT can also help to improve production efficiency by reducing lead times and minimizing downtime caused by waiting for materials or components.
JIT can also help to improve product quality by reducing defects, and increasing the ability to quickly identify and correct any problems that may arise in the production process.
JIT also helps companies to be more responsive to customer demand by reducing lead times and increasing the speed of delivery. This can help to improve customer satisfaction, and increase the chances of repeat business.
JIT also helps companies to be more flexible and adaptable to changes in customer demand. It allows companies to more easily shift production to different products or product lines, which can help to maintain profitability during periods of slow sales.
However, it's worth noting that JIT is not suitable for all industries and companies, it's best applied in companies where the production process is well-defined, the demand is stable and predictable, and the lead times are short. Implementing JIT can also be challenging and requires a significant investment of time and resources to establish an effective system.
Additionally, JIT requires a high level of coordination and communication with suppliers and customers, which can be difficult to achieve. This is particularly true for companies that have a large number of suppliers or customers, or those that operate in
Standard Layout
A standard layout is a detailed, visual representation of the ideal workflow and arrangement of resources in a given area.
Standard Layout: The Key to Unlocking Efficiency in Lean Management
Standardization is one of the fundamental principles of lean management, and it's no surprise that it's also one of the most effective ways to improve efficiency and reduce waste in your operations. One of the most powerful tools in the standardization toolbox is the standard layout, also known as "taikyō-sei" in Japanese.
A standard layout is a detailed, visual representation of the ideal workflow and arrangement of resources in a given area. This can include anything from the placement of tools and equipment to the flow of materials and the location of workstations. The goal is to create a clear and consistent way of working that minimizes waste, maximizes efficiency, and makes it easy for everyone on the team to understand and follow.
One of the most important benefits of a standard layout is that it makes it much easier to identify and eliminate sources of waste and inefficiency. By clearly defining the ideal way of working, it becomes much easier to see where things are going wrong and to make adjustments as needed. This can include anything from adjusting the location of workstations to the flow of materials, to the type and size of tools and equipment.
Another key benefit of a standard layout is that it makes it much easier to train new employees and to ensure that everyone is following the same processes. When everyone is working in the same way, it becomes much easier to share knowledge and best practices, which can help to improve the overall performance of the team.
Finally, a standard layout can also be a powerful tool for continuous improvement. By clearly defining the ideal way of working, it becomes much easier to measure performance and to identify areas for improvement. This can include anything from adjusting the flow of materials to the location of workstations, to the type and size of tools and equipment.
So, how do you go about creating a standard layout? The first step is to conduct a thorough analysis of your current operations. This should include a detailed study of the flow of materials, the location of workstations, and the type and size of tools and equipment. You should also pay close attention to the flow of people and information, as this can have a big impact on overall efficiency.
Once you have a good understanding of your current operations, you can then begin to create a detailed, visual representation of the ideal workflow and arrangement of resources. This should include everything from the placement of tools and equipment to the flow of materials and the location of workstations.
It's also important to involve your entire team in the process of creating a standard layout. This will help to ensure that everyone is on board with the changes and that everyone understands the benefits of standardization.
Once you have a standard layout in place, it's important to monitor and measure its effectiveness on a regular basis. This can include anything from tracking the flow of materials to the location of workstations, to the type and size of tools and equipment. It's also important to involve your entire team in the process of monitoring and measuring performance, as this will help to ensure that everyone is committed to continuous improvement.
In conclusion, a standard layout is a powerful tool for unlocking efficiency in lean management. By clearly defining the ideal way of working, it becomes much easier to see where things are going wrong and to make adjustments as needed. This can include anything from adjusting the flow of materials to the location of workstations, to the type and size of tools and equipment. Furthermore, it is a powerful tool for training, knowledge sharing, and continuous improvement. If you're looking to improve efficiency and reduce waste in your operations, a standard layout is definitely worth considering.
Standard WIP (SWIP)
The minimum amount of material or a given product, which must be in process at any time to ensure proper flow of the operation.
The minimum amount of material or product that must be in the process at all times to ensure smooth operation.
Standard Work is a little underrated concept in Lean Manufacturing. It is not simply standardization or work standards.
Standard Work is composed of three elements: Takt time, Work sequence and Standard Work in Process (SWIP). Takt Time is a fundamental concept of Lean Manufacturing, and Work Sequence is relatively intuitive. SWIP, however, is a bit more complex.
SWIP refers to the minimum necessary in-process inventory (work in process or WIP) to maintain Standard Work. It is not more or less than what is needed. To calculate the appropriate quantity for SWIP, one must ask a number of questions.
While a rough estimate of SWIP can be obtained by using the equation SWIP = Sum of Cycle Times / Takt Time, it is still necessary to determine where exactly this SWIP should be applied. The following steps provide a guide for determining the appropriate quantity of SWIP:
what’S the team size?
Standard Work is the most efficient combination of manpower, material, and machine, and is based on takt, work sequence, and Standard Work in Process (SWIP). By definition, it should include manual work. If a process is fully automated, it is not considered Standard Work. Instead, it is likely an NC program.
To determine the appropriate team size, the sum of manual cycle time is divided by Takt Time. Therefore, one piece of SWIP per person is required. The equation for manual SWIP would than be:
SWIP(manual) = Team member x (1 piece = person)
When determining the amount of SWIP, there should be no rounding, unless there is less than a full person. In that case, round up to the nearest whole number.
process steps as automatic one-piece cycle machines
Standard Work assumes the use of multiple processes or machines, and separates human and machine tasks as much as possible.
When using an automatic cycle, the worker will only be responsible for loading and unloading, and will not be present during the actual cycle. The automatic cycle time must also be shorter than the Takt Time, ensuring that there is always at least one piece in the machine during each cycle.
This is known as SWIP (single piece auto), and is calculated as the number of single-piece automatic cycle machines multiplied by one piece per machine. There is no rounding necessary as it is not possible to have less than a full machine. However, this only applies to single-piece automatic cycles, and calculations for batch processes or cycles with longer lead times may differ.
process steps as a single-piece non-machine automatic cycle
The term "non-machine automatic cycle" refers to process steps such as the drying time for paint, curing time for epoxy, and cooling time for hot parts.
These process steps may not involve machines, but they do require a certain amount of time for completion. The ratio of this time to the Takt Time is known as the Single-Piece Non-Machine Automatic (SWIP) cycle.
It is important to note that this value should always be rounded up to the nearest whole number. In some cases, equipment like turn tables or FIFO racks may be used to manage the curing process, ensuring that a finished product is available for each takt, and a new one is added for curing.
Process steps with a batch automatic cycle
Batch processes refer to situations in which equipment is designed to unload and load multiple pieces at a time, rather than one piece at a time.
A common example is heat treatment processes where a vacuum must be maintained and the door cannot be opened for hours. In such cases, a batch of parts is removed and then another batch is loaded. The cycle time per piece may be less than the Takt Time, but the overall automatic Cycle Time is greater than the Takt Time.
The Single-Piece Non-Machine Automatic (SWIP) cycle in this case is calculated as (Automatic time / Takt Time) x 2. The reason for this is that in batch processes, which do not allow for the addition or removal of individual pieces during the Takt, an extra quantity of complete parts is required. This concept can be compared to the idea of a pulley and bucket system used to retrieve water from a well, where one bucket is at the bottom of the well, full of water and another bucket is at the top, full of water, and during Takt, you empty out the bucket one by one and fill it back up one by one.
It's worth noting that in formulas 2, 3 and 4, manual cycle time is not included in the calculation because rule #1 takes care of that. This is because every manual Cycle Time must be within Takt by definition of Standard Work and since the unload/load time will involve one piece, there is no need to add manual time back into the calculation (in most of the cases).
Muri
Muri, a Japanese term meaning "unreasonable, impossible, or overburdened," refers to the excessive demands placed on resources, such as equipment and operators, which can lead to wear and production downtime.
Muri, a Japanese term meaning "unreasonable, impossible, or overburdened," refers to the excessive demands placed on resources, such as equipment and operators, which can lead to wear and production downtime. This traditional Japanese concept is often associated with overburden, unreasonableness, and absurdity. However, it can be eliminated through the implementation of standard work practices.
INTRODUCTION
Lean management aims to optimize resources and eliminate wasteful activities in the production process. However, many lean practitioners often focus solely on identifying and eliminating the 7 wastes, known as Muda, neglecting the importance of the other two M's: Mura and Muri.
Identifying and addressing Mura (unevenness) is essential for creating a steady work pace, but it is equally important to identify and address Muri, which is the overburden of resources in the organization's work system. By identifying Muri, organizations can analyze and optimize the capacity of their workforce.
Let's dive deeper into understanding what Muri is and its significance.
What does Muri stand for?
As a lean expert, it's important to understand the concept of Muri, which is a Japanese term meaning "overburden or unreasonable." It is one of the three types of waste (Muda, Mura, Muri) and a key element in the Toyota Production System.
Muri occurs when demands placed on a team exceed their capacity, leading to stress and decreased productivity and efficiency. This can also result in extra working hours and occupational burnouts, negatively impacting team morale and the overall health of the work process.
To avoid this, it's important to be mindful of the workload and to strive for balance at the optimal capacity, where all parts of the system are able to deliver results without the need for extra work. It's also essential to understand the root causes of Muri in order to effectively address it.
What can Muri cause?
It's important to be aware that overburdening teams can occur without conscious intent. Setting unrealistic deadlines, for example, can lead team members to rush their work and result in poor quality and decreased customer satisfaction.
For instance, if a designer is asked to create twice the number of images they are capable of producing within a certain timeframe, it's likely that the final output will not be of the highest quality.
This analogy can be applied to an assembly line as well, where rushing the process can increase the likelihood of low-quality products being delivered to customers. There are various reasons that can contribute to creating Muri and it's important to identify and address them to maintain a smooth and efficient workflow.
Over-demanding
One of the most apparent causes of Muri is over-demanding, where higher management places excessive workloads on teams with the belief that more inputs will result in more outputs.
However, this often leads to a rising number of pending tasks and can cause chaos and burnouts among the team members. This over-demanding behavior is commonly seen in the contemporary business world, it is important for management to be aware of the consequences of overburdening the team, and to instead aim for a balance between inputs and outputs.
Lack of training
The lack of proper training can lead to inefficiencies and the prolonging of tasks. For example, if a team member is not properly trained for a specific task, they may take longer to complete it than necessary.
For instance, if an individual is trained as a copywriter but is assigned tasks of a designer, they may require twice as much time to produce high-quality images as compared to a regular designer who is properly trained for that role.
This highlights the importance of providing proper training and ensuring team members are equipped with the necessary skills to perform their roles effectively, which can help prevent Muri and optimize the workflow.
Lack of communication
Effective communication is crucial for the success of any team. To avoid overburdening, it is essential to establish clear communication channels and practices.
For example, if a meeting with team members is held and a decision is made to create 10 new landing pages for a website, it is important that all team members are informed and aware of the project, including the expected deadline.
Failure to do so, such as in the scenario where a designer is not informed until the last day before the deadline, can lead to overburdening and negative consequences of Muri due to miscommunication. Clear communication can prevent such situations and help teams work efficiently and effectively.
Lack of proper tools and equipment
When the necessary tools and resources are absent, the occurrence of Muri becomes evident and unavoidable. For example, if certain developers are given new computers while others are still using outdated equipment, the latter group will experience overburdening as they will require more time to complete their tasks.
Muri can be caused by various factors, it's important to keep in mind that managing and addressing all of them is crucial in order to maintain a stable and efficient workflow.
To effectively deal with Muri, it's important to identify and understand the root causes, and develop strategies to address them. This may include providing proper tools and resources, implementing clear communication channels, and providing adequate training to ensure that teams have the necessary skills to perform their roles effectively.
Different ways to deal with Muri
Lean management offers various techniques and strategies that can assist in minimizing the negative impact of overburdening or eliminating it altogether.
Map your team’s workflow
A useful starting point in identifying and addressing Muri is to map out your team's workflow. One tool that can aid in this process is a Kanban board, which visually displays the various stages of the workflow and allows for an understanding of your team's capacity and where value is added.
Next, implementing work-in-progress limits for each stage of the workflow can ensure that team members are not juggling multiple tasks at once, but are focusing on completing one task before moving on to the next. This helps to create an efficient pull system, which leads to better organization and prevents overburdening.
When dealing with multiple teams whose work is interdependent, it is important to also implement WIP limits on a global level. For example, if team A is responsible for developing new features for a software service and team B is responsible for deploying those features, but team A is delivering new features faster than team B can deploy them, team B will be constantly overburdened. To avoid this, team A must ensure that team B has the capacity to handle new features before starting work on them. This may mean that team A may have to wait, but it is better to have one team blocked than have the entire company impacted.
Standardize your process
Another approach to addressing Muri is through the implementation of standardization. By documenting all processes and providing thorough training to team members, you can ensure that everyone is equipped to complete their tasks in an efficient and effective manner. This promotes clear communication and helps to eliminate misunderstandings, which can contribute to overburden.
Practice Jidoka
Another Lean management technique that can be used to address Muri is Jidoka. This practice empowers team members to halt the work process if an issue arises, and requires the problem to be resolved before the process can continue. This helps to establish built-in quality standards and prevent the need for rework.
Furthermore, regularly conducting Gemba walks, which involve physically going to the work area to observe and understand what is happening, can also provide insight into where Muri is occurring and how it can be addressed.
In a nutshell
Many businesses unknowingly put excessive demands on their staff, known as Muri in Japanese. This can lead to decreased efficiency and wasted resources, impacting profitability. To address Muri, it is important to:
Provide proper training and necessary tools and equipment to teams
Establish clear communication channels and protocols
Implement standard procedures within the organization
Ergonomic Workplace
A work place that takes into consideration most of the ergonomic aspects such as the operator’s height, range and reach.
An ergonomic workplace is a work system that considers the ergonomic aspects of an operation and the operator such as the operator’s hight, range and reach with the goal that the operator does not need to bend or turn.
The ergonomic workplace goes hand in hand with the work improvement.
Definition and purpose
Reveal waste increasing cost and not adding value.
Find waste in the movement of workers, eliminate/improve, pursue net work adding value.
Worker Movement
Lean Manufacturing and Ergonomics may have different roots and directions but together they can complement each other and define a more efficient and safer workplace.
One of the best person known for focusing on productivity and efficiency in manufacturing processes was Henry Ford with the invention of the modern assembly line. Ford really was focusing on eliminating waste and to cut down unnecessary costs in relation to the manufacturing of his cars.
Toyota is one of the best known companies that has stretched to the maximum the idea of Lean Manufacturing and is now holding the pole position when it comes to the reputation according the elimination of “waste”.
By looking at the Lean Model as well as Work Ergonomics, you clearly see the necessity of both practices in the industrial workplace, as well as observe that both can complement each other.
The 7 types of waste to eliminate include:
Transport
Inventory
Motion/Movement
Waiting
Overproduction
Overprocessing
Defects
The list of TIMWOOD is what Toyota has defined as the seven major types of wastes or non-value-adding activities. The seven wastes do not add any value to the product and the customer in the end is not willing to pay for it. Therefore it is essential to remove as much waste as possible which will have also an effect on the ergonomic workplace and furthermore on the health of the operators.
Some of these things like transport, waiting or unnecessary movement can be reduced to a limit what the operator still needs because as human being the operator is limited by his body.
The Lean Manufacturing initiatives and workplace ergonomics stepped into the manufacturing world at different times and therefore are not fully integrated. But you are perfectly advised by combining the principles of Workplace Ergonomics with Lean Manufacturing initiatives. Through a cooperative assessment and teamwork you have the chance to complement each other in making the workplace more efficient and a safer place.
OCT
The Operator Cycle Time is the time an operator needs to fulfill a dedicated process step, including loading and unloading but excluding waiting time.
The Operator Cycle Time is the time an operator needs to fulfill a dedicated process step, including loading and unloading but excluding waiting time.
The Operator Cycle Time is measured from when the operator starts his/her process and is stopped when he/she is ready for the next workpiece (no matter if it’s there or not). Yes I said that the OCT is exclusive waiting time, but not exclusive the waiting time within the process itself. That means if the operator is waiting for a machine, he/she loaded, to finish the operation and unload the workpiece, this waiting time will be included in the OCT.
Most of the time OCT can be seen as the same as “cycle time”. The main difference comes from the waiting time an operator has, while a machine is running a process and the operator him-/herself would be ready for the next piece. This means in the end the OCT is always shorter as the CT. Going even further this means that the OCT can be shortened when installing a HANEDASHI device that autounloads the workpiece after the operation.
As with all lean management activities and targeted increase on productivity and flexibility time is on focus. But make sure to understand the process first, before running improvement actions you have to know what to improve.
Stay Connected
Ad
We want information fast and in a nutshell. We from OI recommend Blinkist* - because it’s simply the best.
* = Affiliate Link